SVM-Based Time Series Prediction with Nonlinear Dynamics Methods

نویسندگان

  • Francesco Camastra
  • Maurizio Filippone
چکیده

A key problem in time series prediction using autoregressive models is to fix the model order, namely the number of past samples required to model the time series adequately. The estimation of the model order using cross-validation is a long process. In this paper we explore faster alternative to cross-validation, based on nonlinear dynamics methods, namely Grassberger-Procaccia, Kégl and False Nearest Neighbors algorithms. Once the model order is obtained, it is used to carry out the prediction, performed by a SVM. Experiments on three real data time series show that nonlinear dynamics methods have performances very close to the cross-validation ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Fuzzy Based Method for Heart Rate Variability Prediction

Abstract In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main components of this method. This learning process in this method is similar to conventional gradient descent learning process, except that the input patterns and parameters are stored in mem...

متن کامل

Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series

Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...

متن کامل

Functional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price

Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...

متن کامل

Introducing evolving Takagi-Sugeno method based on local least squares support vector machine models

In this study, an efficient local online identification method based on the evolving Takagi–Sugeno least square support vector machine (eTS-LS-SVM) for nonlinear time series prediction is introduced. As an innovation, this paper has applied the nonlinear models, i.e. local LSSVM models, as the consequence parts of the fuzzy rules, instead of the linear models used in the conventional evolving T...

متن کامل

Visualization and Interpretation of SVM Classifiers

Many machine learning applications involve modeling sparse high dimensional data. Examples include genomics, brain imaging, time series prediction etc. A common problem in such studies is the understanding of complex data-analytic models, especially nonlinear highdimensional models such as Support Vector Machines (SVM). This paper provides a brief survey of the current techniques for the visual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007